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1 January 11, 2017

1.1 Fundamental Particles

All fundamental particles can be classified according to two observable parameters,
mass m and charge q. We note that this simplified model of he universe is in-
credibly effective at explaining a wide range of physical phenomena. There are four
fundamental forces in nature:

1. Strong Nuclear Force is responsible for holding together protons and neu-
trons, as well as holding atomic nuclei together. It is over a very short range,
around 10−15 m.

2. Weak Nuclear Force is responsible for radioactive decay and fusion reactions
in the sum. It has a very short range, around 10−17 m.

3. Electromagnetic Force is responsible for nearly everything we observe. It
is an extremely important force to understand that ranges over a long range.

4. Gravitational Force is responsible for planetary orbits, holding together
galaxies and maintaining an atmosphere. It has a long range.

An electric charge is an intrinsic property of particles. It is a quantity that
determines the strength of the electric force between two objects. It cannot be
created or destroyed, but can transfer from one object to another. Like charges
repel, while opposite charges attract. Electric charge is always quantized. Charge
always comes in some integer multiple of some fundamental charge e, which is the
charge of the electron.

Almost all of the mass of an atom is contained in the nucleus, while almost all of
the space is occupied by the electron cloud. Therefore, the diameter of the nucleus
is much smaller than the diameter of its corresponding atom. Thus, electric charge
comes in discrete packages, as does photons

Insulators do not conduct electricity, since the electrons are not free to move.
The valence electrons are tightly bounded. Conductors on the other hand, do
conduct, since the electrons are free to move. In conductors, valence electrons form
a “sea of electrons”. We have two kinds of charges, positive and negative. We
always draw the force vector with the tail on the particle. We recall that same
charges repel, while opposite charges attract.

1.2 Charge Experiment

When we rub a balloon on our hair, we cannot create charged particles. However,
when rubbing, electrons may be transferred from one to the other. This results in
a net transfer of charge. In an isolated atom, the electron cloud is centered on the
nucleus. When an external charge polarizes the atom, the polarized atom becomes
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an electric dipole. This results in polarized atoms. In the case of the balloon
experiment, the local external charge on the side of the balloon that was rubbed
agains the hair causes a net force on the wall, which is an insulator.

Negatively charged valence electrons inside a conductor are able to freely move
around. As a result, while the positively charged atomic cores are fixed in place.
When we bring a positive rod near a conductor, the metal’s net charge is still zero,
but it has been polarized by the charged rod. Free electrons are attracted to the
positively charged rod, inducing a polarization. A deficit of electrons on the far side
of the conductor results.

2 January 12, 2017

2.1 Coulomb’s Law

We know that the force between charged objects varies with distance, and this force
also depends on the amount of charge. Coulomb’s law states that the electric
field decreases with distances. The force that describes this is Coulomb’s force.
Coulomb’s law describes the force that charged particles exert on each other. For
point charges, the force always acts along the line joining the charges. We can
formulate Coulomb’s law in two different ways:

F = K
q1q2
r2

,

where K, the electrostatic constant, is equal to 8.99× 109N ·m
2

C2 , and

F =
1

4πε0

q1q2
r2

,

where ε0, the permittivity of free space, is 1
4πK = 8.85× 10−12 C2

N ·m2 .
To compute the magnitude and direction, we first follow the following steps:

1. Find the distance between the charges.

2. Draw a line passing through the two charges.

3. The force on q1 due to q2 has its tail at location 1, and points either towards
q2 or away from q2.

4. Pick the direction according to the basic rule of charges, where like charges
repel and opposite charges attract.

The SI unit for charge is the coulomb (C). Fundamental charge is the smallest
possible amount of free charge, which is equal to the charge of a proton,

e = 1.60× 10−19C.

Therefore, we note that 1 C = 6.25×1018 protons. We sometimes use microcoulombs
(10−6C) and nanocoulombs (10−9C).
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2.2 Superposition Principle

The total force on a point charge q3 is the vector sum of the individual forces acting
on the charge by both q1 and q2. We can consider the building blocks of electric
charge by considering the effect of a point charge on positive charges q located at any
location relative to the point charge. If the point charge is also positive, the electric
force on the charges q would be directed outwards, with a decreasing magnitude as
q increases in distance from the point charge. In the case that the point charge is
negative, the point charges would be attracted instead.

Remark. ~i corresponds with the positive x axis, ~j corresponds to the positive y axis,
and ~k corresponds to the positive z axis.

3 January 13, 2017

3.1 Van de Graff Generator

A Van de Graaf generator uses a moving belt to accumulate electric charge on
a hollow metal globe on the top of an insulated column, creating high electric po-
tentials. Without a potential difference, there is no discharge through the air to
the ground. By slowing the discharge with a lightning rod, the discharge to ground
slows, and no visible instant jump discharge occurs.

4 January 16, 2017

4.1 Coulomb’s Law Examples

Example. Suppose that the force of q1 on q3 is ~F13 = +3N , and the force of q3 on
q1 is ~F31 = F31î. Determine the component F31.

According to Newton’s Third Law, we recall that the force is equal in magnitude
and opposite in direction. Therefore, ~F13 = ~F31. Thus, the scalar factor by which
we multiply the x component is −3N .

Example. Determine the total electric force on q1 given that q3 has the same charge
and is d to the right of q1, and q2 has the opposite charge and is 2d from q1.

We apply Coulomb’s Law to determine the force of ~F21 and ~F31. Since the
charges are ±1C, and the distance between charges is 1m and 2m respectively, we
can use K = 8.99× 10−9N ·m

2

C2 to find that the forces become

‖~F31‖ = 8.99× 10−9N,

‖~F21‖ = 2.25× 10−9N.

Taking the direction into consideration, we note that the force towards q1 is greater
than that away from q1. Therefore, the net force becomes

~Fnet =
(
−6.74× 10−9N

)
î.
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5 January 28, 2017

5.1 Coulomb’s Law Examples Cont’d

Example. Let q1 = +2C, q2 = +5C, and r = 10m. Determine the electrostatic
force on the charges, given that they are positioned at 30◦ from each other.

We first determine the unit vector in this direction. Wr note that r̂12 = cos (30◦) î+
sin (30◦) ĵ. We apply Coulomb’s law to determine that

~F12 = K
q1q2
r2

r̂12

=
(
8.99× 109Nm2/C2

) (2C)(5C)

(10m)2
r̂12

=
(
8.99× 108N

)
r̂12

= 8.99× 108 (cos (30◦) + sin (30◦))N

Similarly, we note that ~F21 = 8.99× 108 (− cos (30◦)− sin (30◦))N .

Remark. We can use the Pythagorean Theorem and the definition of trigonometric
functions to rewrite our expressions for electrostatic force.

5.2 Electric Force of Dipole

Consider a dipole consisting of a positive and negative charge, with charges q and
−q located d apart. Another charge Q is located x away on the axis perpendicular to
the center of the dipole. Since the horizontal components cancel due to symmetry,
we can simply add the vertical components to determine an expression for the
electric force,

F = 2

(
KqQ

x2 +
(
d
2

)2
)

sin θ.

However, we can express

sin θ =

(
d
2

)√
x2 +

(
d
2

)2 ,
so the final expression becomes

F =
KqQd(

x2 +
(
d
2

)2) 3
2

.
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6 January 19, 2017

6.1 Electric Force of Line of Charge

Consider a line of charge L with a total charge Q. That is, instead of a discrete
number of charges, we have a continuous set of charges in a line. We note that the
linear charge density is given as

λ =
Q

L
.

In the case that the line of charge is positioned vertically, we note that the y com-
ponent of the charge cancels out. We are therefore concerned only with determining
the horizontal component. The electrostatic force due to a line of charge on a
point charge is given by

F =
KqQ

d

√(
L
2

)2
+ d2

,

where K is the electrostatic constant, d is the distance from the point with charge
q to the centre of the line of charge, Q is the total charge of the rod of length L.

We can also consider the limit as d >> L or when d << L. In the case that
d >> L, the wire line of charge appears to be a point charge since

(
L
2

)2
+ d2 ≈ d2.

Therefore, we can use the simplified expression

F =
kqQ

d2
.

In the case that d << L, we note that since we are near the line of charge, the

length appears to be infinite since
(
L
2

)2
+ d2 ≈

(
L
2

)2
. Therefore, we can use the

simplified expression

F =
2kqλ

d
.

7 January 20, 2017

7.1 Electric Force Examples

Example. Calculate the net force on particle 1 with a charge of +2q located at the
bottom left corner, from particle 2 with a charge of −2q located at the bottom right
corner, particle 3 with a charge of −q located at the top right corner, and particle
4 with a charge of +q located at the top left corner. They form a square with side
lengths a.

We apply the superposition principle with Coulomb’s law to determine that

~F21 = 4K
q2

a2
î,
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~F41 = −2K
q2

a2
ĵ,

~F31 = K
q2

a2

(
cos (45◦) î+ sin (45◦) ĵ

)
.

The overall net force is therefore

~F21 = K
q2

a2

(
(4 + cos (45◦)) î+ (−2 + sin (45◦)) ĵ

)
.

7.2 Charge Geometries

We can consider the four main basic charge geometries. These geometries are basic
because they are very symmetrical. We note that these charge geometries can be
either positive or negative in charge. We have already considered the point charge,
so we shall now consider the three others:

1. An infinitely long charged wire with length L and charge Q has a linear charge
density of

λ =
Q

L
.

2. An infinitely wide charged plane with area A and charge Q has a surface charge
density of

σ =
Q

A
.

3. A charged sphere with volume V and charge Q has a volume charge density
of

ρ =
Q

V
.

Electric dipole moment for charges +q and −q separated by a distance of s
is given by

~p = qs,

in the direction from −q to +q. Regarding charges, we note the principles of charge
quantization, which states that

q = ne,

where n = ±1,±2,±3, ... and e = 1.60× 10−19C, and charge conservation, as in
the case of annihilation and pair production given respectively as

e− + e+ → γ + γ,

γ → e− + e+,

where γ is the gamma ray, e− is the electron, and e+ is the positron.
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8 January 23, 2017

8.1 Electric Fields

When a charge A exerts a force on charge B through empty space, where there is
no contact and no apparent mechanism, we refer to this as an action-at-a-distance
force. Gravity is an example of such a force, is the the electrostatic force. In our
example, if A suddenly moved to a new position, the force on B varies to match
this change. We consider the case where we only have one charge. This charge still
affects the surrounding space. We quantify this by making use of the concept of an
electric field. That is, charges create fields and the fields push the charges. A field
is the ability to exert an electric force if a charge were present. The equation for an
electric field is given as

~E(x, y, z) =
~F (x, y, z)

q
.

For a point charge for instance, the force on q′ at a point in the field can be measured
from the charge q. We note then that

~F (x, y, z) =
1

4πε0

qq′

r2

in the direction away from q′. The electric field is therefore given as

~E(x, y, z) =
~F

q′
=

1

4πε0

q

r2

in the direction away from q′. We can also add up the field like vectors by using
the superposition principle. We can therefore add up all the forces on a charge and
divide out the charge. That is,

~E(x, y, z) =
~F

q

=
~F1q

q
+

~F2q

q
+

~F3q

q
+ ...

= ~E1 + ~E2 + ~E3 + ...

=
∑

~Ei

Field lines show the density of a field. They are lines with arrows showing the
direction of the field. The density of the field lines gives an idea of how strong the
field is. Field lines also never cross each other. Field lines are drawn outwards from
positive charges, and inwards towards negative charges.
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8.2 Electric Field of a Dipole

9 January 25, 2017

9.1 Electric Field of Line of Charge

9.2 Electric Field of Ring of Charge

The electric field due to a ring of charge with radius R on a point P located directly
z from the center of the ring so as to maintain symmetry with the ring is given as

Ering =
1

4πε0

zQ

(z2 +R2)
3
2

.

We note the limiting cases where z approaches zero, and when z >> R. First we
consider when z = 0, the numerator becomes 0, so

Ering ≈
1

4πε0

zQ

(z2 +R2)
3
2

= 0.

In the case when z >> R, R becomes essentially 0 compared to z, so we obtain

Ering ≈
1

4πε0

zQ

(z2 + 02)
3
2

=
1

4πε0

Q

z2
.

10 January 26, 2017

10.1 Electric Field of Charged Disk

Let the surface charge density of the disk of radius R to be σ = Q
A , and let point P

be located directly z from the center of the disk so as to maintain symmetry with
the disk. The electric field is therefore given as

Edisk =
σ

2ε0

(
1− z√

z2 +R2

)
.

We note the limiting cases where z approaches zero, and when z >> R. First we
consider when z = 0. Since we are positioned close to the disk, the area of the plane
appears to extend indefinitely. Thus, the following is also the expression for the
electric field of the plane,

Edisk ≈ Eplane =
σ

2ε0
.

Note that when z > 0, the electric field for the plane is positive, whereas the field is
negative when z < 0. In the case when z >> R, R becomes essentially 0 compared
to z, so we obtain

Edisk ≈
Q

4πε0z2
.
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For disks with arbitrary widths composed of different densities, we evaluate

− σz
2ε0

(
z2 + r2

)−1/2 ∣∣∣R2

R1

,

where R1 is inner radius and R2 is outer radius. It follows that the electric field of
a disk comes from this when R1 = 0 and R2 = R.

10.2 Electric Field Lines

We recall that field lines are less dense when the field is weaker, and field lines are
more dense when the field is stronger. Electric field lines are continuous curves,
while electric field vectors are tangent to the field lines. We also note that two
electric field vectors cannot intersect, since the electric field at that point would be
undefined. Sources of field lines are positive charges where field lines start, and
sinks are negative charges where field lines end. We can consider this in the case
of electric dipoles with two charges of equal magnitude and opposite sign.

When electric force is the only force acting on a particle, we can relate ~F = m~a
with ~F = q ~E. Thus,

~a =
q ~E

m
.

In a uniform field, ~E is the same everywhere.

11 January 27, 2017

11.1 Electric Flux

Field strengths are measured in

~E =
~F

q
,

where ~F is measured in Newtons N and q is measured in Coulombs C . If the field
is coming out of each face of the box, then there must be a positive charge in the
box. If the field is going into each face of the box, then there must be a negative
charge in the box. A field that passes through the box implies that there is no et
charge in the box. Gauss’ Law is equivalent to Coulomb’s Law. It presents an
easier way to calculate electric fields in specific circumstances (especially situations
with a high degree of symmetry). It also provides a better understanding of the
properties of conductors in electrostatic equilibrium and is valid for moving charges
since it is not limited to electrostatics.
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12 January 30, 2017

12.1 Electric Flux Cont’d

A closed surface through which an electric field passes is called a Gaussian sur-
face. This is an imaginary mathematical surface that is closed around a charge.
The Gaussian surface is most useful when it matches the shape of the field. Gauss’
law relates the electric field at points on a closed Gaussian surface to the net charge
enclosed by that surface. The area vector of a surface indicates the vector per-
pendicular to the surface, and always points outside. Electric flux Φe is defined
by the amount of electric field going through a surface and the number of field lines
coming through a surface. It is given by

Φe = E ·A = EA cos(θ).

where E specifies the electric field, A is the area of the surface, and θ is the angle
between E and A. This is the expression for a flat surface and a uniform field. If
the field lines are going towards the surface, it is negative. If the field lines are
extending from the surface, it is positive. We note that the electric flux through a
parallel surface is 0, whereas the electric flux through a perpendicular surface is the
entire magnitude of EA.

The total flux through a closed surface under a uniform field can be obtained
by integrating the dot product over the full surface

Φ =

∫
~E · d ~A.

The net flux through a closed surface (which is used in Gauss’ law) is given as

Φ =

∮
~E · d ~A.

To determine the flux through a closed surface, we first divide the closed surface
into pieces that are tangent to the electric field, perpendicular to the electric field,
or with a certain specific angle to the field. We then evaluate the surface integral.

For instance, suppose we have a cylinder surface. We can divide it into sections
a, b, and c, where a is the area of the top circle, b is the area of the side of the
cylinder, and c is the area of the bottom circle. Thus, we obtain

Φe =

∮
a

~E · d ~A+

∮
b

~E · d ~A+

∮
c

~E · d ~A

=
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13.1 Gauss’ Law

Gauss’ law relates the net flux Φ of an electric field through a closed surface (a
Gaussian surface) to the net charge q that is enclosed by that surface. That is,

ε0Φ = q,

ε0

∮
~E · d ~A = q.

Therefore, charge outside of the surface is not considered. We note that this expres-
sion can be rearranged to find that∮

~E · d ~A =
q

ε0
.

We consider the electric flux over a proton, electron, and then a proton along with
an electron. We apply the equation directly above to find that +q

ε0
, −qε0 , and 0

ε0
. The

last surface encloses no net charge, since the enclosed positive and negative charges
have equal magnitudes. Gauss’ lLw requires that the net flux of the electric field
through this surface be zero. Gauss’ Law us applied to closed surfaces, and the
electric flux is independent of surface shape and radius.

Applying Gauss’ Law to a point charge, we obtain the expression of an electric
field for a point charge. Thus, we note that Gauss’ Law provides equivalent solutions
to Coulomb’s Law. Furthermore, charges outside the surface do not affect the
electric flux, since there is no net flow into our out of the surface due to the external
charge. Therefore, the net flux through a Gaussian surface that does not contain
any charge is zero. For multiple charges, the electric flux is given as

Φ =

(
q1
ε0

+
q2
ε0

+ ...+
qn
ε0

)
,

for charges q1, q2, ..., qn enclosed by the surface.

14 February 2, 2017

14.1 Electric Field in Shell of Charge

We shall use Gauss’ law to compute the electric field inside and outside a spherical
shell of charge. By using a symmetrical argument, we note that the electric field
must point in the radial direction only. Furthermore, the electric field must be the
same magnitude at a constant radius. We note that inside the sphere, there is no
enclosed charge, so

Eshell = 0
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for r < R, where r is the imaginary radius of the sphere at point P and R is the
radius of the shell of charge. For any radius outside the shell of charge, we have
an enclosed charge of Q. Since the surface area of a sphere is 4πr2, we recall that∮
~E · d ~A = EA = q

ε0
, so our expression is

Eshell =
Q

4πε0r2

for r > R.

Remark. When we want to determine the electric field at a certain point, we can
consider the sphere with that point lying on the surface of the sphere. We then
consider the charges enclosed by that imaginary sphere.

14.2 Electric Field in Shell of Charge

We note that the electric field outside a sphere of charge is the same as the electric
field outside of a shell of charge Q. That is,

Esphere =
Q

4πε0r2

for r > R. The field inside the sphere of charge can be determined by considering
the volume charge density

ρ =
Q

4
3πR

3
,

where Q is the total charge of the sphere and R is the radius of the sphere of charge.
Thus, since the charge enclosed is ρ ∗ V , we note that V = 4

3πr
3, where r is the

radius of the imaginary sphere are point P inside of the sphere. Therefore, the
enclosed charge is

q =
Qr3

R3
.

Once again, E = q
Aε0

where A = 4πr2. Thus, the electric field inside a sphere of
charge is

Esphere = Q
r

4πε0R3

for r < R.

15 February 3, 2017

15.1 Gauss’ Law Cont’d

Remark. Different surfaces may be more suitable when the direction of the enclosed
charge is not directed radially outwards. For instance, the flux could be more easily
calculated using a cubic gaussian surface when presented a plane of charge.
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16.1 Charged Isolated Conductor

If an excess charge is placed on an isolated conductor, that amount of charge will
move entirely to the surface of the conductor. None of the excess charge will be
found within the body of the conductor. That is, if we charge a conductor, the
excess charges spread out on the exterior surface of the conductor, with the electric
field at the surface perpendicular to the surface. A conductor is a material in
which the charges are free to move. This means that

1. There is zero net charge inside a conductor (Qnet = 0). If there are two or
more like charges inside a conductor, they will repel and push each other far
away (to the surface).

2. There is zero electric field inside a conductor (Ein = 0). If there is a non-zero
field, the F = Eq implies that there is a net force which means charges would
move until the force on them is zero, so we have static equilibrium.

Since the electric field inside a conductor is zero, this immediately implies that
conductors are electrically neutral in their interiors. This also means that the surface
of a hollow cavity inside a conductor cannot carry any excess charge. All excess
charge must reside on the outside surface only. The electric field over the conducting
surface is given as

E =
σ

ε0
.

To summarize, we note that the electric field inside the conductor is zero. All
excess charge is distributed to the surface, so that the conductor is neutral on the
inside. In the event that there is a void completely enclosed by the conductor, the
electric field inside the enclosed void is zero. Furthermore, the electric field that is
distributed to the surface is perpendicular to the surface (and parallel to the area
vector) with a magnitude of E = σ/ε0. This means that charges are closer together
and the electric field is strongest at a pointed end of a surface. That is, the charge
density is greatest where the radius of curvature is smallest.

Remark. We note however, that the electric field is not dependent on the distance.

17 February 8, 2017

17.1 Electric Field of Charged Wire and Plane

We note that for a long charged wire with a charge density of λ of length L and
radius r, the electric field of the wire is given by

Ewire =
λ

2πε0r
.
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18.1 Examples

Example. Two very thin infinite sheets are uniformly charged with surface charge
densities of −2q and +5q. What is the magnitude and direction of the electric field
between the two sheets?

We note that the electric field would travel from right to left, from the posi-
tive charge to the negative charge. We use the superposition principle to obtain a
magnitude of +7q.

19 February 15, 2017

19.1 Electric Potential

The potential energy of two point charges q and q′ separated by a distance of r is
given as

Uq′+q =
1

4πε0

qq′

r
+ U0.

However, U0 is generally set to 0. The potential energy of two charges separated by
an infinite distance is equal to zero. Since potential energy is a physical property
that exists because of the force between two charges, we can also define the notion
of potential energy as a result of the electric field. The potential of one charge q is
therefore

Vpoint =
Uq′+q
q′

=
1

4πε0

q

r
.

The units for electric potential are volts V , defined as V = J/C. Note that while
electric force and electric field are vector quantities, potential energy and electric
potential are scalar quantities. We recall that work we can related to force times
the distance it is exerted. Thus,

W = F∆h = qE∆h.

Therefore, between plates with Ub > Ua, the work exerted would be

UEb − UEa > 0,

while the work done is
−
(
UEb − UEa

)
.

Superposition can be applied to potential energy when we are dealing with multi-
ple charges. In general, the total potential energy is the sum of the pairwise potential
energies of all charges present. To evaluate the total potential energy, we calculate
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U between each pair, then sum the intermediate results. Thus, for potential energies
of U12, U23, and U13, for charges q1, q2, and q3, then the total potential energy is

Utotal = U12 + U23 + U13.

Given some source charges and a point P , we can place a charge q at point P .
This charge q then interacts with the source charges. The interaction energy is the
potential energy of q and the source charges. This interaction happens because the
source charges create a potential for interaction everywhere, including at point P .
This potential for interaction is a property of space, since charge q does not need to
be there. We call this potential for interaction the electric potential V .

20 February 16, 2017

20.1 Electric Potential Cont’d

Electric potential V at a point P in the electric field of a charged object is

V = −W∞
q0

=
U

q0
,

where W∞ is the work that would be done by the electric force on a positive test
charge 10 were it brought from an infinite distance to P , and U is the electric
potential energy that would then be stored in the test charge-object system. Thus,
the electric potential U of the particle-object system is U = qV.

The following are some important properties:

1. Change in Electric Potential: If the particle moves through a potential
difference of ∆V , then the change in the electric potential energy is

∆U = q∆V = q(Vf − Vi).

2. Work by the Field: The work W done by the electric force as the particle
moves from i to f is

W = −∆U = −q∆V = −q((Vf − Vi).

3. Conservation of Energy: If a particle moves through a change ∆V in elec-
tric potential without an applied force acting on it, applying the conservation
of mechanical energy gives the change in kinetic energy as

∆K = −q∆V = −q(Ff − Vi).

4. Work by an Applied Force: If some force in addition to the electric force
acts on the particle, we account for that work

∆K = −∆U +Wapplied = −q∆V +Wapplied.
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Electric potential is advantageous to calculate, since it is a scalar quantity. Since
there is no direction associated with it, we can simply find the net potential by
summing the individual potentials, so

V = V1 + V2 + ...+ Vn.

Equipotential lines are imaginary liens that indicate equal potential. There-
fore, if we move along the equipotential surface, then by definition, ∆V = 0. This
implies that ∆V = −E∆r = 0, where E is the perpendicular equipotential surface.
For instance, the potential of a uniform spherical charge is V (r) = kQ/r. Thus, for
each r, V (r) is constant over any sphere concentric with the charged sphere.

The surface of a conductor is an equipotential. If there were a potential difference
across the surface of the conductor, then the freely moving charges would move
around until the potential is constant. This means that the electric field must meet
a conducting surface at right angles, since any tangential component would imply a
tangential force on the free charges.

21 February 27, 2017

21.1 Potential Gradient

We note that E is always perpendicular to the equipotential lines, so E is always
perpendicular to V . That is,

~E = ~∇V = −∂V
∂x

î− ∂V

∂y
ĵ − ∂V

∂z
k̂.

In 3 dimensions, we must take 3 derivatives and add them vectorially. Alternatively,
the potential is found from the electric field integrated along any path connecting
points A and B,

VAB =

∫ B

A

~E · ds.

On equipotential surfaces, adjacent points with the same electric potential lie on
an equipotential surface. No net work W is done on a charged particle by an electric
field when a particle moves on the same equipotential surface. Similarly, equal work
is done along paths between the same surfaces, and no work is done along paths
that return to the same surface. For a uniform electric field, the work done on a
particle by a force can be used to determine

∆V = −E∆x.
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21.2 Electric Potential of a Dipole

Given charges +q and −q with distances from point P of r+ and r− respectively,
the expression of the electric potential of a dipole is given as

V =
q

4πε0

r− − r+
r−r+

.

However, for r >> d where d is the distance between the dipoles, we can rewrite
r−r+ ≈ r2 and r− − r+ ≈ d cos(θ). Thus,

Vdipole =
q

4πε0

d cos(θ)

r2
=

1

4πε0

ρ cos(θ)

r2
,

where ρ is the dipole moment and θ is the angle from the venter of the dipole to the
point P .

22 March 1, 2017

22.1 Electric Potential of a Line of Charge

For a thin nonconducting rod of length L with a uniform positive charge with charge
density λ, we can find the electric potential V due to the rod at point P , located a
perpendicular distance d from the left end of the rod. We note that

dV =
1

4πε0

dq

r
.

Where the integral of dV is equal to the potential. With dq = λdx. Thus, we find
that

Vline =
λ

4πε0

∫ L

0

dx

(x2 + d2)1/2

=
λ

4πε0
ln

(
L+

(
L2 + d2

)1/2
d

)

22.2 Electric Potential of a Ring Along its Axis and a Charged
Disk

Given a ring of radius R with total charge Q, the potential at a point located a
distance of z from the center axis is given as

Vring =
1

4πε0

Q√
R2 + z2

.
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The potential of a charged disk can be found by integrating the differential element
consisting of a flat ring of radius R with radial with dR. Doing this, we find that
the potential at a point located along the axis of a charged disk is given by

Vdisk =
σ

2ε0

(√
z2 +R2 − z

)
,

where σ is the surface charge density, z is the vertical distance of the point P from
the center of the disk, and R is the radius of the disk.

22.3 Electric Potential of a Charged Isolated Conductor

The surface of a conductor is an equipotential. If there was a potential difference
across the surface of a conductor, the freely moving charges would more around until
the potential is constant. This means that the electric field lines must always meet
a conducting surface at right angles since any tangential component would imply a
tangential force on the free charges.

23 March 6, 2017

23.1 Capacitance

One of the goals of physics is to provide basic science for practical devices designed
by engineers. A capacitor is any two electrodes separated by some distance. Re-
gardless of the geometry, we call these electrodes “plates”. A capacitor consists of
two isolated conductors (the plates) with charges +q and −q. Its capacitance C
is defined as

q = CV,

where V is the potential difference between plates. In general, for equal but opposite
charges on the plates, this arbitrary set of electrodes creates an electric field. The
equipotential lines are rings around the charges, with a straight line along the center
between the charges. The potential changes from V+ on the positive plate to V− on
the negative plate.

We first consider a parallel plate capacitor. It is made up of two plates of
an area A separated by a distance d. The charges on the plate surfaces facing each
other have the same magnitude q, but are of the opposite sign. The electric field
due to the charged plates is uniform in the central region between the plates. The
field is not uniform at the edges of the plates, as indicated by the “fringing” of the
field lines. The source charges on the capacitor plates create a uniform electric field
between the plates. Suppose that each plate has a surface charge density of ±σ.
The electric field from positive to negative is therefore

~E =
σ

ε0
.
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The electric potential inside a charged capacitor increases linearly from the negative
to the positive plate. The potential difference between two points such that the
distance between them is the same relative to the negative and positive plates has
the same potential difference. We can define V = 0 to be anywhere we want. Our
choice of V = 0 does not affect any potential differences or the electric field.

When a circuit with a battery, an open circuit, and an uncharged capacitor is
completed by closing the switch, conduction electrons shift, leaving the capacitor
plates with opposite charges. The battery maintains the potential difference V
between its terminals. When the plates are uncharged, the potential difference
between them is zero. As the plates become oppositely charged, that potential
difference increases until it equals the potential difference V between the terminals
of the battery.

23.2 Calculating Capacitance

To calculate the electric field and potential difference, we perform the following step:

1. To relate the electric field E between the plates of a capacitor to the charge q
on either plate we use Gauss’ Law

ε0

∮
~E · d ~A = q.

2. The potential difference between the plates of a capacitor are related to the
field E by

Vf − Vi = −
∫ f

i

~E · d~s.

Letting V represent the difference Vf − Vi, we can recast the above equation
as

V =

∫ +

−
Eds.

3. Find capacitance from
q = CV.

For very large plates that are very close together, E is constant throughout the
region between the plates. The Gaussian surface encloses just the charge q on the
positive plate. The path of integration travels from the negative plate to the positive
plate in a perpendicular manner. Thus, applying Gauss’ law, we have

q = ε0EA.

Finding the potential, we have

V =

∫ +

−
Eds = E

∫ d

0
ds = Ed,
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where d is the distance from the negative plate to the positive plate. Thus, relating
q and V for the capacitance of parallel-plate capacitors, we obtain

Cplate =
ε0A

d
.

We now consider a cylindrical capacitor of length L formed by two coaxial
cylinders of radii a and b. When L >> b, we neglect fringing of the electric field that
occurs near the ends of the cylinders. Each plate contains a charge of magnitude q.
For a cylindrical capacitor, Gauss’ law states that

q = ε0EA = ε0E(2πrL),

where r is the radius of the Gaussian surface containing the positive inner charge.
The potential is given as

V =

∫ +

−
Eds = − q

2πε0L

∫ a

b

dr

r
=

q

2πε0L
ln

(
b

a

)
.

The capacitance is therefore

Ccylinder =
q

V
= 2πε0

L

ln(b/a)
.

For a spherical capacitor, the capacitance is

Csphere = 4πε0
ab

b− a
,

where b is the radius of the outer shell, ad a is the radius of the inner sphere of
charge. The capacitance of an isolated sphere of radius R is

Csphere = 4πε0R.

24 March 8, 2017

24.1 Calculating Capacitance Cont’d

In general, we have the following relationships:

1. General Relationship
Q = C∆VC .

2. Parallel Plate Capacitor

Q =

(
ε0A

d

)
∆VC .
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3. Spherical Capacitor

Q =

(
4πε0rbra
rb − ra

)
∆VC .

4. Isolated Sphere
Q = (4πε0R)∆VC .

5. Cylindrical Capacitor

Q =

 2πε0L

ln
(
rb
ra

)
∆VC .

Remark. We note that capacitance is independent of charge or potential. Potential
is found from the negative plate to the positive plate.

24.2 Capacitors in Parallel and Series

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q. The sum of the potential differences
across all the capacitors is equal to the applied potential difference V . For voltages
V1 = q

C1
, V2 = q

C2
, and V3 = q

C3
, the total potential difference is

V = V1 + V2 + V3 = q

(
1

C1
+

1

C2
+

1

C3

)
.

The equivalent capacitance is then

Ceq =
q

V
=

(
1

C1
+

1

C2
+

1

C3

)−1
,

or
1

Ceq
=

1

C1
+

1

C2
+

1

C3
.

Capacitors that are connected in series can be replaced with an equivalent capacitor
that has the same charge a and the same total potential difference V as the actual
series capacitors.

When a potential difference V is applied across several capacitors connected in
parallel, that potential difference V is applied across each capacitor. The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.
For charges q1 = C1V , q2 = C2V , and q3 = C3V . The total charges on the parallel
combinations is therefore

q = q1 + q2 + q3 = (C1 + C2 + C3)V.
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The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination is therefore

Ceq =
q

V
= C1 + C2 + C3.

Capacitors that are connected in parallel can be replaced with an equivalent capac-
itor that has the same total charge q and the same potential difference V as the
actual capacitors.

24.3 Energy Stored in an Electric Field

We want to calculate the potential energy stored in the capacitor. To move a small
amount of charge dq from the negative plate to the positive plate, it moves through
a potential difference of ∆V . Its potential energy increases by a certain amount.
Thus,

dU = dq∆VC ,

where ∆VC = q
C . Therefore,

U =
1

C

∫ Q

0
qdq =

Q2

2C
.

This expression presents energy storage in terms of the charge on the plates. Energy
storage in terms of the voltage across the plates is given by

U =
CV 2

2

since we note that Q = CV . The potential energy of a charged capacitor may be
viewed as being stored in the electric field between its plates. Energy density
refers to the potential energy per unit volume between the plates. For parallel plate
capacitors, this is

u =
U

Ad
=

1

2
ε0

(
V

d

)2

=
1

2
ε0E

2.
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25.1 Capacitors with a Dielectric

If the space between the plates of a capacitor is completely filled with a dielectric
material, the capacitance C in a vacuum (or effectively, in air) is multiplied by the
material’s dielectric constant, which is a number greater than 1. Th is is given as

C = κCair,
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where κ is the dielectric constant. If the potential difference between the plates of
a capacitor is maintained, as through the presence of a battery B, then the effect of
a dielectric is to increase the charge on the plates,

q = CV = κCairV = κqair.

If the charge on the capacitor plats is maintained, as through isolating the capacitor,
then the effect of the dielectric is to reduce the potential difference between the
plates,

V =
q

C
=

q

κCair
=
Vair
κ
.

A potentiometer is a device used to measure potential difference. This can be used
to measure the potential difference between the plates. A capacitor cannot discharge
through a potentiometer.

In a region completely filled by a dielectric material of dielectric constant κ, all
electrostatic equations containing the permittivity constant ε0 are to be modified by
replacing ε0 with κε0. For instance, the magnitude of the electric field produced by
a point charge inside a dielectric is

E =
1

4πκε0

q

r2
.

The magnitude of the electric field outside of an isolated conductor immersed in a
dielectric is

E =
σ

κε0
.

25.2 Atomic View of Dielectrics

We now consider what happens at the atomic scale when we put a dielectric in
an electric field. Molecules with a permanent electric dipole moment show their
random orientation in the absence of an external electric field. When an electric
field is applied, it produces partial alignment of the dipoles. Thermal agitation
prevents the complete alignment of molecules in polar dielectrics. On the other
hand, the initial electric field inside a non-polar dielectric slab is zero. The applied
field proceeds to align the atomic dipole moments. To summarize, the result of the
inclusion of a dielectric is to increase C, decrease V , and decrease E. The field
of the aligned atoms is opposite to the applied field. The effect of both polar and
non-polar dielectrics is to weaken any applied field within them. We can then find
force using

Fx = −dU

dx
,

since the fringe electric field at the edges pull the dielectric into the gap.
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26.1 Electric Current

Since there are moving charges in electric circuits, there is no electrostatic equilib-
rium. Conductors are therefore allowed to have non-zero electric fields inside (this is
what causes the charges to move). We note that the total amount of charge flowing
past a surface at time ∆t is the same as the total amount of charge flowing past
another surface in the same amount of time ∆t. The total amount of charge flowing
through any surface at time ∆t must be constant, since otherwise charges would
begin to accumulate. Current in a wire is constant, and given as

I =
dq

dt
.

26.2 Current Density

The current in a wire is the flux of charge carriers (electrons) through a surface.
Current is also expressed as

I =

∮
S

~J · d ~A,

where ~J is the current density. The current I is then interpreted as the number of
charges passing through a surface in a specified direction. The vector ~J contains
information on the density of conduction electrons in the conductor, as well as the
net velocity of these conduction electrons. The current density J is in the same
direction as the velocity of the positive moving charges and opposite direction if
the moving charges are negative. Conduction electrons are actually moving in the
direction opposite to the positive charge, but the conventional current is taken with
respect to the positive charges. Note that while the net movement of electrons is
in the direction opposite to the electric field, there are slight deviations unless the
electric field is strong, or the movement occurs near absolute zero. Thus, current is
expressed as

i =
q

t
= JA.

If we let ne be the volume density of conduction electrons, q = ne(AL)e be the
amount of charge contained in a length L of the wire, and t = L/vd be the time it
takes for each charge to travel a distance of L, then current is

i =
q

t
=
ne(AL)e

L/vd
= neAevd.

This implies that
~J = nee~vd.

~J is a vector, and is always in the direction that “streamlines” the electrons at
any given location in the wire, while the current I is a scalar since it just has a
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magnitude. The direction is the average displacement of all the charges in the wire,
and thus always points in the general direction of the wire.

26.3 Resistance and Resistivity

Resistance is a property of conductors that are not ideal. Electrons have frequent
collisions with atomic nuclei. When a voltage difference is created across the con-
ductor, this accelerates the electrons, making their collisions more energetic. This
gets dissipated as heat inside the metal. A resistor is any circuit element that dis-
sipates energy. Light bulbs are the classic example, but there are other examples.
The amount of energy that is dissipated by a given resistor is given by its resistance
R. We quantify resistance as

∆V = IR,

where ∆V is the potential difference across a wire of length L, where I is the current
flowing in the direction ~j along the wire with cross sectional area A.

Resistance is a property of an object, while resistivity is a property of a mate-
rial. Instead of the resistance R of an object, we may deal with the resistivity ρ of
the material,

ρ =
E

J
.

The reciprocal of resistivity is the conductivity σ of the material,

σ =
1

ρ
.

The resistance R of a conducting wire of length L with a uniform cross sectional
area A is given as

R = ρ
L

A
.

Current is driven by a potential difference. The resistivity ρ for most materials
change with temperature

ρ− ρ0 = ρ0α(T − T0),

where T0 is the reference temperature, ρ0 is the resistivity at T0, and α is the
temperature coefficient of resistivity of the material.

26.4 Circuits

When a voltage difference of ∆V is applied across a resistor R, the voltage difference
causes the electrons to flow through the resistor. The flow of electrons is the electrons
is the electric current. These quantities are related by Ohm’s Law:

∆V = IR.
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In this class, we will usually treat wires as ideal so that ∆V = 0 across any wire
segment even if there is no current flowing. A battery is any source that supplies
a voltage difference in an electric circuit. The voltage is either specified by V , or by
the symbol ε which stands for the electromotive force (EMF). Real batteries also
have a resistance to them. Recall that in current convention, the flow of positive
charge is opposite to the flow of negative charge. The simplest circuit has an ideal
battery, ideal wires, and a single resistor. Kirchoff’s Loop Rule states that the
sum of the voltage differences around a closed loop in a circuit must be zero through
the conservation of energy,

∆VAB + ∆VBC + ∆VCD + ∆VDA = 0.

The voltage across a resistor is negative if one is going around the loop in the
direction of the flow of current. We consider that current flows from the negative
terminal to the positive terminal. The voltage across a resistor is positive if one is
going around the loop in the direction opposite to the direction of the flow or current.
The voltage across a battery is negative going from the positive to negative. Thus,
substituting ε for V , we have Ohm’s Law expressed as

ε− IR = 0.

26.5 Kirchhoff’s Loop Rule

In this class, we make use of the following convention. When a current flows across
a resistor from + to −, then it travels from a higher to lower V , so ∆V = −IR.
When the current is flowing across the resistor from − to + from a lower to higher
potential, then ∆V = IR. Similarly, when a current flows from + to − across a
voltage source, ∆V = −ε, and when current flows from + to − across a capacitor
from higher to lower V , we have ∆V = −Q

C .
We recall that the current into a junction must equal the current out of the

junction, since charge has to be conserved. That is,

I = I1 + I2.

Resistors in series have the same current running through them, while those in
parallel have the same voltage across them. Thus, the equivalent resistance for
resistors in series and parallel are given respectively,

Req = R1 +R2 + ...+RN ,

Req =

(
1

R1
+

1

R2
+ ...+

1

RN

)−1
.
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27 March 15, 2017

27.1 Ohmic and Non-Ohmic Devices

Materials with isotropic electrical properties produce a linear relationship when
current i is plotted against the potential difference V . Materials with anisotropic
electrical properties do not follow this pattern forming a linear relationship. In
a microscopic view of Ohm’s law (resistivity), electrons bounce around inside the
metal at very high speeds on the order of 0.05c, where c is the speed of light. When
an electric field is applied in the conductor, there is a net force on the electrons
leading to “drift speed”,

vd =
J

ne
.

According to the microscopic view of resistivity,

ρ =
m

ne2τ
,

ρ− ρ0 = ρ0α(T − T0).

Thus, temperature dependent resistance can be modeled by

R−R0 = R0

(
2

3
α

)
(T − T0).

27.2 Power in Circuits

We recall that power is the rate at which work is done, so

P =
W

∆t
.

A battery with voltage ∆V raises the potential energy of a single charge q by an
mount q∆V . This is the work done by the battery. For N charges, we have

P =
NqV

∆t
=

(
Nq

∆t

)
V = IV.

Thus, the power in circuits can be calculated with the following formulas:

P = IV = RI2 =
V 2

R
.

27.3 Grounding

A ground is represented by three horizontal lines connected to the conductor. It
represents the place in the circuit where V = 0. In electrical outlets, the wide slot is
neutral, the narrow slot is hot/live, and the third slot on the bottom is the ground.
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27.4 Ammeter and Voltmeter

A voltmeter is connected in parallel. We consider the resistance of the voltmeter to
be infinite. An ammeter on the other hand, is connected in series. We consider the
resistance of the ammeter to be near 0;.

27.5 Non-Ideal Batteries

Every voltage source has some internal resistance to it. Usually, this can be ignored.
When it cannot be ignored, the internal resistance simply acts as a resistor in series
with the rest of the circuit. Thus, for a source with a voltage ε, the expression
becomes

ε− Ir − IR = 0.

We note the following results:

I =
ε

r +R
,

Pε = Iε =
ε2

r +R
,

PR = I2R =
ε2R

(r +R)2
.

27.6 RC Circuits (Resistors and Capacitors)

So far, we have only considered steady and continuous currents. Many impor-
tant circuit applications use a combination of capacitors and resistors to produce
time dependent currents. Examples include wireless signals in a cordless phone,
remote control, etc. A simple RC circuit consists of a voltage source connected to
a resistor, a switch, and a capacitor. When the switch is open, no current can flow,
so that charge and voltage on the capacitor is 0. When the switch is closed for a
long time, the charge on the capacitor becomes Q = CV . The voltage across the
capacitor is V and no current flows in the circuit. Immediately after the switch is
closed or opened, we have time dependent currents.

1. Charging a Capacitor: Initially, the capacitor is uncharged. The resistance
R in the circuit could be the internal resistance of the battery, the resistance
of connecting wires, an actual resistance in the circuit, or a combination of the
above. When the switch is suddenly closed at t = 0, a current flows through
the capacitor. If we plotted current against time, we would note that the
current starts off at a maximum, then reaches 0 after a long duration of time,

i = i0e
− t
RC .

Furthermore, if we plotted charge against time, we will notice that charge
starts off at 0 and rises until is reaches a peak where the slope is 0,

q = εC(1− e−
t
RC ) = Qf (1− e−

t
RC ).
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2. Discharging a Capacitor: The switch is connected to the capacitor for a
long time until t = 0. The switch is then suddenly flipped at t = 0 so that
the capacitor is not acting as the voltage source. That is, the capacitor was
charged up to voltage V , and then discharged. Once the switch is flipped to
the right, we have

q(t)

C
− iR = 0 =⇒ q

RC
= i = −dq

dt
,

where we note that dq < 0. Solving for the charge q(t) on the capacitor, we
have

q(t) = q0e
− t
RC ,

i(t) = i0e
− t
RC ,

q0 = CV.

If we plotted q(t) with t, we would note that q(t) starts out at a maximum
and decreases to 0 over time.

28 March 16, 2017

28.1 Circuits Cont’d

According to the linear model, the resistivity ρ in metals increases with increasing
T . In reality, the real result slightly slopes away from the linear model predicted.
On a ρ and T graph, the slope at ρ0 and T0 is given as ρα. In semiconductors, ρ
decreases with increasing T . One the other hand, superconductors have ρ = 0 for
T < TC .

Example. A switch is initially open, so the capacitor of 0.001F connected to a
10V battery and a 10Ω resistor is uncharged. At time t = 0, the switch is closed.
Determine the voltage across the capacitor immediately after the switch is closed.

At t = 0, the charge is 0. Thus, since V = q
C , V = 0.

The constant RC appears in the exponential factor for both the charging and
discharging of capacitors. What does it represent? The units of RC are seconds.
We call RC the RC time constant and it tells us how quickly a capacitor can
charge or discharge,

RC ≡ τ.

After a time τ , the charge on a discharging capacitor is reduced by a factor of 1/e.
After a time Nτ , it is reduced by a factor of 1/eN . Thus,

q(t) = Q0e
− t
τ .
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Example. An RC circuit consists of a 12V source with internal resistance 0.5Ω.
A switch connects a 10mF capacitor to this voltage source or to a 25Ω resistor.
Initially the switch is open and the capacitor is uncharged. At time t = 0s, the switch
is thrown to the left, connecting the capacitor to the battery. At time t = 15ms the
switch is thrown to the right, connecting the capacitor to the resistor. Determine the
amount of charge that builds up on the capacitor while it is connected to the battery.
Determine the voltage across the resistor as a function of time as the capacitor
discharges, and the ratio of the charging time to discharging time.

When we are charging the capacitor, we make use of q(t) = Qf

(
1− e−

t
RC

)
. A

fully charged capacitor has charge Qf = CV = 10mF · 12V = 120mC. The RC
time constant is τ = RC = 0.5Ω · 10mF = 5ms. At 15ms, the charge is given by

q(t) = 120mC
(

1− e−
15
5

)
= 114mC.

When discharging the capacitor, the expression for voltage is

V = RI0e
− t
RC =

q0
C
e−

t
RC .

Thus, substituting values into this equation, where q0 = 114mC, C = 10mF , and
RC = 25Ω · 10mF = 250ms, we find that

V = (11.4V )e−
t

0.25 .

Lastly, the charging and discharging times are given by τ . Thus, in the charging
phase, this was 0.5ms, whereas in the discharging phase, this was 25ms. Thus, the
ratio of charging to discharging times is 1/50.

29 March 20, 2017

29.1 Magnetic Fields

Like poles repel, while unlike poles attract. Magnetism is not the same as electricity.
For instance, cutting a magnet does not create one north pole piece and one south
pole piece. Magnetic monopoles have not been verified. That is, we cannot have a
north pole without a south pole. Magnetic fields are necessarily three dimensional.
Magnetic field lines never start or stop anywhere. When Oersted was giving a
physics lecture in 1819, he realized that compass needles responded to the current
in a straight wire. The compass needles pointed tangle to a circle around the wire.
The needle of a compass is a small magnet. Geographically, the south magnetic
pole lies near the geographic north pole. Hence, the north side of a compass points
towards this direction.

To denote vectors heading into the page, we use a cross. To denote vectors
leaving the page, we use a dot. While an electric force acts on a charge regardless
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of its motion, the magnetic force acts only on a moving charge. Given a charge q
moving with velocity ~v, the magnetic field ~B induces a magnetic force ~F that is
perpendicular to ~v and ~B, with magnitude of

~FB = q~v × ~B.

Thus, the magnitude is given by

FB = qvB sin(α),

where α is the angle between ~v and ~B. The direction is given by the right hand
rule.

The SI unit of magnetic field is the Tesla, and is equal to 1 Newton per unit
Ampere multiplied by meters. However, a Tesla T is relatively large, so a more
useful unit is the Gauss, where 10000G = 1T . In these units, Earth’s magnetic field
is around 0.5G.

29.2 Circulating Charged Particle

Charged particles in uniform magnetic fields undergo uniform circular motion. The
radius of the circle depends on how fast the particle is moving. Since circular motion
is given by

‖~F‖ =
mv2

r
,

we can equate the two equations where

‖~FB‖ = ‖q‖vB.

Thus,

r =
mv

‖q‖B
.

For instance, suppose that ~B points into the page. Then, ~v points perpendicular to
~B. The magnetic force is always perpendicular to ~v, causing the particle to move
in a circle. This is the basis of cyclotron motion. Earth’s Van Allen belt (aurora
borealis/australis) is an example of a magnetic ion trap. The charged particles spiral
around the magnetic field lines. The Earth’s magnetic field leads particles into the
atmosphere near the poles, causing the aurora.

30 March 22, 2017

30.1 Magnetic Field

Since r = mv
‖q‖B , this means that since v = 2πr

T , solving for T , we obtain

T =
2πm

‖q‖B
,
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where T is the period of time it takes to make one cycle. The frequency is therefore

f =
‖q‖B
2πm

.

The period (and frequency) of the circular motion depends on the B-field strength
and the charge-to-mass ratio q/m. Splitting up the velocity into a component par-
allel to the B-field and a component perpendicular to the B-field immediately leads
to helical motion. The velocity component perpendicular to the field causes circling,
which is stretched upward by the parallel component. Note that since the magnetic
field does not change the velocity, the kinetic energy remains constant.

30.2 Cyclotrons and Synchrotrons

We may sometimes need beams of high energy particles. Two accelerators that
employ a magnetic field to repeatedly bring particles back to an accelerating region
are the cyclotron and the proton synchrotron. They key to the operation of a
cyclotron is that the frequency f at which the proton circulates in the magnetic field
(and that does not depend on its speed) must be equal to the fixed frequency fosc
of the electrical oscillator. The protons spiral outwards in a cyclotron, picking up
energy in the gap. In the proton synchrotron, the magnetic field B and the oscillator
frequency fosc, instead of having fixed values as in the conventional cyclotron, are
made to vary with time during the accelerating cycle. That is, the frequency of the
circulating protons remain in step with the oscillator at all times. Additionally, the
protons follow a circular path, not a spiral. Thus, the magnet needs to extend only
along that circular path, and not over some 4 · 106m2. An application is in mass
spectrometers.

30.3 Crossed Field - Discovery of the Electron

A modern version of J.J. Thomson’s apparatus for measuring the ratio of mass to
charge for the electron. If a charged particle moves through a region containing both
an electric field and a magnetic field, it can be affected by both an electric force and
a magnetic force. When two fields are perpendicular to each other, they are said to
be crossed fields.

30.4 Crossed Field- The Hall Effect

A beam of electrons in a vacuum can be deflected by a magnetic field. In 1879,
Edwin H. Hall showed that drifting conduction electrons in a copper wire can be
deflected by a magnetic field. Due to a magnetic field, the net charge can build up
on the edges. In equilibrium, current still flows. We need to balance the magnetic
and electric forces on the charge carriers. Equating

FB = qvdB,
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FE =
∆V q

d
,

we obtain
∆VH = vdBd,

where d is the distance from positive to negative, ∆VH is the voltage between this
distance, and vd is the speed perpendicular to the direction from + to −. This is
the voltage established across a conductor carrying a current in a magnetic field. It
can also be the voltage across a conductor that is moving through a magnetic field.
The drift speed can be related to current, where

vd =
i

neA
,

where A = ld and n is a material property. We can then relate the Hall voltage to
known quantities. In practical applications, we solve for the magnetic field using
the Hall voltage,

B =
nel∆V

i
.

A similar concept is a velocity selector, where a charge is sent through a region
with an electric and magnetic field. Only when the forces are balanced does the
charge make it through to the other side without hitting a wall. We can alter the
electric and magnetic fields to select the speeds we want,

qE − qvB = ma.

A Bainbridge mass spectrometer accelerates charges through ∆V so that they
all have the same kinetic energy. The slits S1 and S2 ensure that the beam of
particles is collimated. The beam then enters a region of crossed fields, where a
narrow slit ensures only particles with a specific speed enter. Particles with the
same kinetic energy but different masses and charges will have different radii in the
magnetic field.

31 March 23, 2017

31.1 Magnetic Force on a Current-Carrying Wire

For free charges moving in a magnetic field, a force is experienced,

~FB = q~v × ~B.

Conductors are full of charges that are free to move around. If a conductor moves in
a magnetic field, these charges also experience a magnetic force. A straight wire
carrying a current i in a uniform electric field experiences a sideways force,

~FB = i~L× ~B,
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where i is current, L is the length vector that has a magnitude L and is directed
along the wire segment in the direction of the conventional current, and B is the
magnetic field. We note that current in wires is nothing more than charges in
motion. It does not matter if we consider −q moving opposite i or +q moving in
the same direction of i. If a wire is not straight, or the field is not uniform, then we
can imagine the wire broken up into small straight segments. The force on the wire
as a whole is then the vector sum of all the forces on the segments of the wire. The
differential limit can be expressed as

d~FB = id~L× ~B,

where the direction of the length vector L or dL is in the direction of current i. The
magnitude is therefore ∥∥∥~FB∥∥∥ = iLB sin(θ).

31.2 Torque on a Current Loop

We first pick the normal vector to the loop area by using the right hand rule. We
curl our fingers in the direction of i so that the direction of our fingers aligns with
the direction that current travels, with the thumb pointing in the direction of the
normal vector n. When the normal vector is at right angles to the magnetic field,
all of the magnetic force causes a rotation in the loop. When the normal vector is
at some angle to the magnetic field, some of the magnetic force causes rotation of
the loop. Lastly, when the normal vector is parallel to the magnetic field, none of
the magnetic force causes rotation of the loop. Thus, components of magnetic force
that are antiparallel to the normal vector cause torque. Thus, the net force on the
loop is the vector sum of the forces acting on its four sides equals 0. The net torque
acting on the coil has a magnitude given by

τ = NiAB sin(θ),

where N is the number of turns in the coil, A is the area of each turn, i is the
current, B is the field magnitude, and θ is the angle between the magnetic field B
and the normal vector to the coil n.

32 March 27, 2017

32.1 Biot-Savart Law

Magnetic field are caused by moving charges. Charged particles with spin also
produce magnetic fields. This is given by

~B =
µ0
4π

q~v × r̂
r2

,
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where µ0 is the vacuum permeability, and ~r is the vector from the point charge to
the point at which we want to find the magnetic field. Alternatively, we can use the
definition that r̂ = ~r/‖~r‖ to find that

~Bpoint =
µ0
4π

q~v × ~r
r3

.

Suppose we have a current carrying wire. The current is simply a bunch of
moving charges. To derive the expression for charges in a wire, we consider a charge
∆Q in a small length ∆s of a current carrying wire. Thus, in a current segment,
the magnetic field is

~Bcurrent =
µ0
4π

I∆~s× r̂
r2

,

where I is the current, and ∆~s is the segment. According to the right hand rule,
we point the thumb in the direction of current, and the direction of the magnetic
field is the direction which the fingers curl. The magnetic field vector points in the
direction of the north pole of the compass magnet. The magnetic field vectors are
tangent to circles around the wire, pointing in the direction given by the right-hand
rule. The field is weaker the farther we are from the wire. Magnetic field lines take
the form of circles for current carrying wires. As a result of this, we find that in the
z direction into or out of the page, the magnetic field of the infinite straight wire is

Bz =
µ0
2π

I

d
,

where d is the perpendicular distance of the point from the wire of current I. Bz
is tangent to a circle around the wire in the right-hand direction. The magnitude
of the magnetic field at the center of a circular arc of wire of radius R and central
angle φ (in radians) carrying a current I is given by

Barc =
µ0iφ

4πR
.

The right hand rule reveals the field’s direction at the center.
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33.1 Magnetic Field of a Circular Loop

Along the center of a circular loop of radius R containing a current I, we find that
at point P located along the axis at a distance of z from the center of the loop, the
magnetic field is given by

~Bloop =
µ0IR

2

2 (z2 +R2)
3
2

k̂.
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At a distance of z = 0, this simplifies to

~Bcenter =
µ0I

2R
k̂.

As a result of this, the magnetic field of a coil that consists of N loops carrying
current I around the radius R, the magnetic field at the center of the coil is

~Bcoil =
µ0NI

2R
k̂.

33.2 Force Between Two Antiparallel Currents

We recall that the magnetic force due to current is

F = I~l × ~B,

where I is the current, l is the length of the wire through which the current flows,
and B is the magnetic field. Given that the magnitudes of the magnetic fields in
the wires is

B =
µ0I

2πd
,

we note that the force of one wire on another which is parallel to it is

µ0lI1I2
2πd

,

where I1 and I2 denote the current in the first and second wires respectively, and
d is the distance between the wires. If the magnetic fields are opposite in between
the wires, then the force is attractive towards each other. Otherwise, the force is
repulsive and away from each other.

33.3 Dipole Fields

Magnetic fields form a magnetic dipole. Note that magnetic field lines are contin-
uous, since they travel from the south pole to the north pole within the magnet.
Thus, the magnetic field lines do not stop at the poles. The magnetic field lines
from a magnet point out of the north pole and into the south pole, The magnetic
flux passing through an arbitrary Gaussian surface is therefore 0,

ΦB =

∮
~B · d~a = 0.

The magnetic field through a closed surface is always 0. There is no enclosed mag-
netic charge since there is no way to isolate a north or south magnetic pole. Thus, in
contrast to the simplest electric field that results from a point charge, the simplest
magnetic field results from a magnetic dipole.
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33.4 Maxwell’s Equations

All of electricity and magnetism an be described by Maxwell’s equations,

∇ · ~E =
ρ

ε0
,

∇ · ~B = 0,

∇× ~E = −∂
~B

∂t
,

∇× ~B = µ0 ~J + µ0ε0
∂ ~E

∂t
.

We note that c = 1/
√
µ0ε0. We have currently learned about two of Maxwell’s

equations, since

ΦE =

∮
~E · d~a =

Qenc
ε0

,

ΦB =

∮
~B · d~a = 0.

In magnetostatics, we make use of Ampere’s law.

34 March 30, 2017

34.1 Ampere’s Law

Ampere’s law is evaluated by the line integral of B along a path. The integration
path is a circle of radius d. The integration starts and ends at the same point.
~B is everywhere tangent to the integration path, and has a constant magnitude.
However, the infinitesimal length dl is always in a direction tangent to the closed
loop. Ampere’s law is true for any shape of path and any current distribution.

As opposed to a Gaussian surface, the integration path for magnetic fields is a
closed curve. We only consider the currents that pass through the bounded area.
Only the currents encircled by the loop are used in Ampere’s law. To assign the
sign to a current used in Ampere’s law, we use the right hand rule.

Example. Suppose we are given a current carrying wire with radius r0. Determine
the magnetic field inside the solid current carrying wire, and outside of it. The length
of the solid wire is infinite and the current I is uniformly distributed throughout the
solid wire.

When we are outside, we choose an Amperian loop with radius r > r0. Evalu-
ating the left side of the equation, we have∮

~B · d~l = BL = B2πr.
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The right side gives
µ0Ienc = µ0I.

Thus,

B =
µ0I

2πr
.

When we are inside the wire, we have r < r0. Thus, the left side of the equation
remains the same, since BL = B2πr, but the right side must now account for the
new amount of enclosed current,

µ0Ienc = µ0JA = µ0
Ir2

r20
.

Thus, the magnetic field inside the wire is

B =
µ0Ir

2πr20
.

Note that when we are within a wire, the magnetic field changes linearly with
curtent. When we are outside of a wire, the magnetic field changes inversely with
current.

34.2 Solenoids and Toroids

The magnetic field of a solenoid is

Bsolenoid = µ0ni,

where n = N/L with N being the number of turns of coil per unit length L.

35 March 31, 2017

35.1 Application of Ampere’s Law

We recall that Ampere’s law is given by∮
~B · d~l = µ0Iencl,

where current I passes through an area bounded by a closed curve. The integration
path is a closed curve such that currents considered pass through the bounded area.
The current in the direction of the thumb according to the right hand rule is positive.
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36.1 Faraday’s Law and Lenz’s Law

By now, we know that electric currents cause electric fields, since magnetic fields can
be caused by moving electrical charges. However, the reverse is also true. Magnetic
fields can cause electrical currents. Only changing magnetic fields can cause currents.
At the time when a switch to a circuit connected to a solenoid is closed or opened,
there exists a momentary current. In order for a magnetic field to change, the
strength of the field, the direction, the size of the loop of wire, or the direction of
the loop of wire could change.

The magnetic flux of a uniform electric field,

ΦB = ~B · ~A = BA cos(θ),

where the units of magnetic flux are T ·m2. Magnetic flux can be though of as count-
ing the field lines that pass the closed region. According to Faraday’s experiment,
charges do not start moving spontaneously. A current requires an electromotive
force to exist. Thus,

Iinduced =
ε

R
,

where the emf associated with a changing magnetic flux results in an induced emf.
The induced emf is the rate of change of magnetic flux through the loop. Faraday
discovered that there is an induced emf in the secondary circuit given by

ε = −dΦM

dt
.

This is the new generalized law knnown as Faraday’s law. For a coil of N turns,
we have

ε = −N dΦM

dt
.

This is valid even if ΦM changes because of a time dependent A or an angle φ
(without changing the magnetic field). Thus, evaluating this, we have three possible
terms

ε = −dΦM

dt

= − d

dt
BA cos(φ)

= −dB

dt
A cos(φ)− dA

dt
B cos(φ) +

dφ

dt
BA sin(φ)

Suppose we have the flux through a circuit with area Am so magnetic flux
with uniform magnetic field perpendicular to this would be ΦM = AB. Let the
dimensions of this be l and x, so ΦM = xlB. However, if we move the right side of
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the circuit so that it encompasses a larger area by increasing x at a velocity ~v, we
can apply Faraday’s law to find that

ε =

∥∥∥∥dΦM

dt

∥∥∥∥
=

d

dt
xlB

= vlB

We then use Ohm’s law to find the induced current

I =
ε

R
=
vlB

R
.

We note that the induced current depends on either a changing magnetic field, a
changing area, or a changing angle. Otherwise, there is no induced current.

The negative sign from Faraday’s law indicates that the system opposes the
change caused by the induced current. The changing magnetic field generates an
induced current which creates an induced magnetic field which, in turn, resists the
change in magnetic flux. Lenz’s law states that the induced current from Faraday’s
law is always in a direction such that the induced magnetic field from the induced
current opposes the change in the magnetic flux through the loop. The current
always generates a field to oppose a change in flux.

We recall that Faraday’s law relates the strength of the induced current. How-
ever, the cause of this current is the induced electric field that is generated by the
changing magnetic field. A non-Coulomb electric field is created by a changing mag-
netic field. If we consider a loop in a wire carrying a current I1, and then increase
the current to I2 > I1 to increase the magnetic field, the changing B fields induce
non-conservative E fields,

−d ~B

dt
= ∇× ~E.

37 April 6, 2017

37.1 Applications of Faraday’s Law

An alternator is an electromechanical device that converts mechanical energy to
electrical energy in the form of alternating current. In principle, any AC electrical
generator can be called an alternator. Alternators are used in cars to charge the
battery and to power the electrical system when the engine is running. In practice,
the loop is stationary and only the magnet rotates. For the alternator, the magnetic
field and the area are constant, but the angle between the two changes constantly,
where

θ = ωt.
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Hence, the time-dependent magnetic flux is

ΦB = BA cos(θ) = BA cos(ωt),

The alternator therefore generates a sinusoidally varying electromotive force,

ε = −dΦB

dt
= −(−ωBA sin(ωt)) = ωBA sin(ωt).

Recall that flux is perpendicular to the surface. Suppose that the magnetic field
points to the right. Thus, when the area vector (perpendicular to the surface) is
in the same direction as the magnetic field, flux ΦB is at its most positive value,
while the electromotive force ε = −dΦB/dt is zero. The flux proceeds to decrease as
the area vector proceeds to point downwards at 90◦ from the magnetic field. This
is when the flux is decreasing most rapidly, and corresponds to the largest positive
electromotive force (since electromotive force is negative of the rate of change of
flux). When the area vector points in the opposite direction to the magnetic field,
flux is at its most negative value, and the electromotive force is zero. The flux begins
to increase until it reaches the point when it increases most rapidly before leveling
off. This corresponds to when the area vector is pointing upwards, with the largest
negative electromotive force. This cycle then repeats.

Recall that the magnetic field of a circular loop is given by

~Bloop =
µ0IR

2

2 (z2 +R2)
3
2

k̂.

At distances from the loop where z >> R, the R term in the denominator cancels
out, leaving

Bloop =
µ0IR

2

2z3
.

Multiplying the numerator and denominator by 2π, we get

Bloop =
µ0AI

2πz3
,

where A is the area of the loop. This is the magnetic field on the axis of a magnetic
dipole.

37.2 Magnetic Dipole Moment

We define the magnetic dipole moment as being a vector perpendicular to the
loop, in the direction of the right-hand rule. The magnitude is

‖~µ‖ = AI,

where A is the area of the loop and I is the current.
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38 April 6, 2017

38.1 Review of Faraday’s Law

Faraday discovered that there is an induced electromotive force in the secondary
circuit given by

ε = −dΦM

dt
,

which can be generalized for N turns of coil,

ε = −N dΦM

dt
.

The definition of magnetic flux is

ΦM =

∫
~B · d ~A = AB cos(θ).

For example, consider an induced current that results from increasing the side
length of a loop to increase the area. We have

ε =

∥∥∥∥dΦM

dt

∥∥∥∥ =
d

dt
xlB = vlB,

where v is the speed at which the side length is being increased. The induced current
is

I =
ε

R
=
vlB

R
.

Now, the force is given by

F = iL×B = BiL sin (90◦) .

Thus, Substituting the above expression for current I, we get

F =
B2L2v

R
.

This can be thought of as the rate at which work is done on the loop as it is pulled
from the magnetic field. The work that is done by pulling the loop through the
magnetic field appears as thermal energy in the loop, since P = Ri2.

When we have changing magnetic fields, there is an induced electric field. This
is what causes the induced currents. A coulomb electric field is created by charges,
whereas a non-Coulomb electric field is created by a changing magnetic field.
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38.2 Eddy Currents

So far, we have considered induction in circuits, where the induced current was
confined to wires. Induction also happens if the magnetic flux through extended
metallic objects changes (we can replace a conducting loop with a solid conducting
plate for example). As with wires, the induced currents attempt to keep the flux
stable. The result is eddy currents, which are given by

I = − 1

R

dΦB

dt
,

where R is the resistance. The direction of the currents can be found suing Lenz’s
law. The relative motion of the field and the conductor again induces a current in
the conductor, thus creating an opposing force. Therefore, as resistance increases,
there is less induced current that opposes the original motion.

38.3 Inductors and Inductance

An inductor is a device that can be used to produce a known magnetic field in
a specified region. An inductor is a passive electrical component that can store
energy in a magnetic field. Note that a changing magnetic flux produces an induced
electromotive force in the direction which opposes the change. Changing the current
through the inductor changes the flux through it, thus creating a back-electromotive
force. If a current i is established through each of the N windings of an inductor, a
magnetic flux ΦB links those windings. The inductance L of the inductor is

L =
NΦB

i
,

where inductance is measured in henries.

Remark. Energy in a capacitor is stored in the electric field, while energy in an
inductor is stored in the magnetic field.

The inductance per unit length near the middle of a long solenoid of cross-
sectional area A with n turns per unit length is given by

L

l
= µ0n

2A.

The potential difference across an inductor is

∆V = −Ldi

dt
.

38.4 Self-Induction

If two coils, which we now call inductors, are near each other, a current i in one
coil produces a magnetic flux ΦB through the second coil. We have seen that if we
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change this flux by changing the current, an induced electromotive force appears in
the second coil according to Faraday’s law. An induced electromotive force appears
in the first coil as well. The process of self induction states that a self induced
electromotive force εL appears in any coil in which the current is changing. Thus, we
combine our understanding of Faraday’s law of induction NΦB = Li and Faraday’s
law εL = −NdΦB/dt to get

εL = −Ldi

dt
.

Note that a self-induced electromotive force appears whenever the current changes
with time. The magnitude of the current has no influence on the magnitude of the
induced electromotive force, since only the rate of change of the current matters.

38.5 Energy Storage in Inductors

If we build up the current from I0 = 0 to If , at time t when we have achieved
a current I, we have to work against an opposing electromotive force in order to
achieve a further increase in current. Our energy source is doing work per unit time.
From integrating power, we find that the total work done or energy stored in the
system to be

U =
1

2
LI2.

Energy density is

u =
U

V
=

U

Al
.

For a solenoid, we can combine this equation, along with B = µ0ni and L/l−µ0n2A
to find that the energy density is

u =
B2

2µ0
.

39 April 7, 2017

39.1 Mutual Induction

Suppose we have two coils. The magnetic field B1 produced by current i1 in coil 1
extends through coil 3. If i1 is varied (by varying resistance R), an electromotive
force is induced in coil 2 and current registers on the meter connected to coil 2.
Thus, if coils 1 and 2 are near each other, a changing current in either coil can
induce an electromotive force in the other. This mutual induction is described by

ε1 = −M di2
dt
,

ε2 = −M di1
dt
.
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Mutual inductance depends on the geometry of the two coils. Typical values for M
are in the range of µH −mH.

If the current in coil 1 is changing, then the changing flux through coil 2 induces
an electromotive force in coil 2. The induced electromotivve force in coil 2 is

ε2 = −N2
dΦB2

dt
,

where ΦB2 is the magnetic flux through a single loop of coil 2, and N2 is the number
of loops. The magnetic field in coil 2 is proportional to the current through coil 1,
so

dB =
µ0
4π

i1dl × r
r2

,

which is the Biot-Savart law. Hence, the magnetic flux through coil 2 is proportional
to i1, where

N2ΦB2 = M21i1,

ε2 = −N2
dΦB2

dt
= −M21

di1
dt
.

A long solenoid will produce a magnetic field that is proportional to the current
I1 and the number of turns per unit length n1, such that

B1 =
µ0N1I1
L

= µ0n1I1.

The total flux through each loop of the outer coil is

ΦB2 = B1A1.

Thus, the mutual inductance is

M =
N2ΦB2

I1
=
N2(B1A1)

I1
=
µ0A1N1N2

L
,

so it does not depend on current I.

Example. Determine the mutual inductance for a 0.5m long coil with a 10cm2 area
with N1 = 1000 and N2 = 10. If a rapidly increasing current is drive through the
outer coil at i2(t) = 2.0 · 106t, determine the electromotive force that is induced on
the inner coil.

By applying the formula, we have

M =

(
4π · 10−7

) (
1.0 · 10−3

)
(1000)(10)

0.5
= 2.5 · 10−5H.

To determine the electromotive force, we now use

ε1 = −M di2
dt

= −
(
2.5 · 10−5

) d

dt

(
2.0 · 106t

)
= −50V.



Electricity and Magnetism 50

Remark. We note that this allows electrical energy in one circuit to be converted to
electrical energy in a separate device.

Example. Suppose we have two nested circular coils of wire, where the larger coil
has a radius of a and consists of N1 turns. The smaller coil of radius b consists of
N2 turns and is both coplanar and coaxial with the larger coil. Assume that b << a,
so that the magnetic field of the larger coil is approximately uniform over the area
of the smaller coil. If there is only current in the larger coil 1 of radius a, determine
the mutual inductance of the combination.

Mutual inductance is given by

M =
N2ΦB2

i1
=
N1ΦB1

i2
.

Since we only know the current in coil 1, we need to use the first expression. The
flux through one loop of coil 2 of area A2 is due to the magnetic field generated by
the current in coil 1. A circular loop of radius a carries a constant current I. We
have two ways of calculating the magnetic field, by the Biot-Savart law or Ampere’s
law. Ampere’s law is not useful for a loop, so we use the Biot-Savart law to find

~B =
µ0I

2a
k̂,

so for N1 loops, this is multiplied by N1. Therefore,

M =
N1ΦB2

i1
=
N2BA

i1
=
N2

(
N1

µ0i1
2a

) (
πb2
)

i1
= µ0N1N2

πb2

2a
.

We expect the result to be proportional to the area of the coil that encounters the
field of the outer coil (πb2). Additionally, we expect a dependence on N1 and N2,
where the field depends on N1 and the flux depends on N2.

39.2 Transformers

In a transformer, we have a primary winding with NP turns, and a secondary wind-
ing of NS turns around a transformer core. The primary wining consists of a primary
current IP and a primary voltage VP , while the secondary winding consists of a sec-
ondary current IS and a secondary voltage VS . Through the body of the circular
transformer core is a magnetic flux Φ. The voltages and turns can be related by

VP
NP

=
VS
NS

.

Primary voltage and secondary voltage are given by

VP = NP
dΦ

dt
,
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VS = NS
dΦ

dt
,

Pin is given by the primary voltage multiplied by the primary current, and Pout is
given by the secondary voltage multiplied by the secondary current. Relating these
equations, we find that

IPNP = ISNS .

39.3 RL Circuit

For a simple circuit consisting of a voltage source, a resistor, and an inductor con-
nected in series, the voltage is V − Ldi

dt − iR = 0 by applying KVL If we place
a switch between the positive end of the voltage source and the inductor, we can
manipulate current flow. Faraday’s law applies, so the change in magnetic field in
the inductor L means that there is a back electromotive force induced in L. In this
case, at t = 0, we have i(0) = 0, so the inductor acts like a battery. After a long
time, i = V/R, so the inductor acts like a wire.

Suppose that the components have all been connected for a very long time. At
t = 0, the switch S is opened to a state such that the inductor is discharging. The
equation for current is then given by

i(t) = i(0)e−(RtL ).

When the circuit is open for a long time, and then closed at t = 0, the inductor
begins charging, where the current is given by

i(t) = imax

(
1− e−(RtL )

)
,

where imax = ε/R. To determine the initial rate of change of current, we note that
the initial voltage in the resistor is 0, since i = 0 at time t = 0. Thus, we solve

V = L
dt

dt

for the change in current di/dt. Note that the inductor slows the rate of change
in current. The inductor creates an electromotive force that opposes the change in
current. Thus, the inductor creates an electromotive force in the opposite direction
to oppose the increase in current. When the rate of change of current decreases,
then the induced electromotive force reduces.

Remark. Memorize charging and discharging of inductors and capacitors, as well as
the time constant, as these will not be provided on the exam.

40 April 12, 2017

40.1 Review
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